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An alternative approach to determining embedding dimension when reconstructing dynamic systems from a
noisy time series is proposed. The available techniques of determining embedding dimension �the false nearest-
neighbor method, calculation of the correlation integral, and others� are known �H. D. I. Abarbanel, Analysis of
Observed Chaotic Data �Springer-Verlag, New York, 1997�� to be inefficient, even at a low noise level. The
proposed approach is based on constructing a global model in the form of an artificial neural network. The
required amount of neurons and the embedding dimension are chosen so that the description length should be
minimal. The considered approach is shown to be appreciably less sensitive to the level and origin of noise,
which makes it also a useful tool for determining embedding dimension when constructing stochastic models.
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I. INTRODUCTION

Methods of solution of inverse problems of dynamic sys-
tem �DS� reconstruction based on the observed processes
�time series, TS� generated by these systems were developed
in a great number of works in the past thirty years �see, for
instance �1–3�, and the references therein�. The interest in
reconstructing deterministic dynamic systems from time se-
ries is easily explained: No complete a priori information
about the processes running in the system is required because
the first-principles models �equations of motion for a me-
dium or individual particles, equations for the field of force,
radiation transport, chemical kinetics, heat and mass transfer,
and others� are not constructed in this case. The mathemati-
cal model of the studied DS is constructed on the basis of
direct analysis of the observed data, generally, without as-
sumptions about the nature of the phenomenon under consid-
eration. This potentially allows taking into account the pro-
cesses poorly studied by the time of model construction. An
example of inadequacy of the first-principles models is the
model of the evolution of the Earth’s ozone layer popular in
the mid 1980s �4� that did not describe formation of the
Antarctic ozone hole because of the “neglect” of the hetero-
chemical processes running with participation of polar strato-
spheric cloud particles.

The available methods of reconstructing dynamic systems
from time series typically include two main steps: �1� recon-
struction of the system’s phase variables and �2� construction
of a model reproducing behavior of the system in the corre-
sponding region of phase space.

Reconstruction of phase variables is accomplished, for ex-
ample, by the method of delay coordinates �5� in the space of
dimension referred to as embedding dimension. The embed-
ding dimension should preferably be chosen to be minimum
possible. In the absence of additional information about the

system, the principal technique for determining embedding
dimension is the false nearest-neighbor method �6� that is
easily realized. Unfortunately, this method is inefficient
when the observed time series contains a pronounced noise
component �1�, thus making it inapplicable for reconstruc-
tion of natural systems.

The basic feature of the second step—construction of a
model from time series—is the fact that it is ill-posed.
Namely, there always exist an infinite number of solutions
approximating the observed data with preset accuracy. It is
intuitively clear that for the great majority of applications,
the model will be the better the simpler it is. Widely used
tools for optimal model selection are known as Bayesian
information criterion �BIC� �7� and Akaike information cri-
terion �AIC� �8�. These criteria were obtained for certain
classes of statistical models of stochastic processes. How-
ever, they appear useless in the case of reconstruction of
dynamical systems from noisy data, as will be shown below
on some model examples. The authors of �9� proposed to use
description length as a measure of simplicity of the model.
The principle of minimum description length implies that the
model corresponding to the least description length is the
best. As was demonstrated in �10�, this provides an effective
tool for choosing technical parameters of the model, includ-
ing the optimal number of such parameters.

In the current work, we use the principle of minimum
description length �MDL� for determining embedding di-
mension. For this, we take the universal model in the form of
an artificial neural network that includes embedding dimen-
sion as a parameter. The specific feature of using neural net-
works is the need to apply physically based prior restrictions
on network parameters; hence, we generalize the definition
of the description length for this case. Besides, we present
the MDL invariance requirement relative to arbitrary smooth
transformations of model parameters. This requirement en-
ables, in particular, finding an explicit expression for MDL,
thus simplifying the use of the MDL principle significantly.

The paper comprises two parts. In the first part, the invari-
ant MDL form is derived and the form of the model is speci-*mukhin@appl.sci-nnov.ru
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fied. In the second part, it is demonstrated that, in the pres-
ence of noise when the standard methods of determining
dimension are inefficient, the MDL principle allows success-
ful solution of the problem. Besides, successful application
of MDL principle to time series measured in real experiment
is demonstrated.

II. DYNAMIC SYSTEM RECONSTRUCTION FROM TIME
SERIES AS A PROBLEM OF OPTIMAL INFORMATION

PACKING

Description length. In terms of description length mini-
mization, data compression is an applied aspect of modeling.
The result of model construction is finding the functional
relationship between data points �TS elements�. This allows
transmitting, instead of a great number of data points, only
parameters of this relationship, as well as residuals which
permit the receiving party to reconstruct the data with preset
accuracy. The information needed for transmitting these re-
siduals will be referred to as data length L, and for the pa-
rameters of the relationship as model length K. The full de-
scription length is a sum of these quantities

F = K + L . �1�

Data length. Following �9�, the data description length will
be understood as the amount of information needed for trans-
mitting time series via some communication line. It is as-
sumed that both the transmitter and the receiver possess
some prior information about the transmitted data specified
by their prior distributions. The better these distributions cor-
respond to the real situation, the smaller the information
needed for transmission is.

Let us have at our disposal a scalar time series �xi�i=1
N . We

assume for simplicity that the TS is centered and normalized,
i.e., �xi�i=0, �xi

2�i=1. The relationship between the data
points �global model� will be constructed in the form

xi = f�xi−1, . . . ,xi−D,�� + �i, � � RM . �2�

Here, D is embedding dimension, � is the vector of model
parameters, and M is the number of the parameters. The
residuals �i are supposed to be independent and normally
distributed with zero mean

p���i� =
1

	2��
exp
−

�i
2

2�2� ,

�2��� =
1

N
�
i=1

N

�xi − f�xi−1, . . . ,xi−D,���2, �3�

where � is root mean square error for model data approxi-
mation.

In accordance with �9�, transmission of the residual �i to
an accuracy of � requires −ln��p���i�� nats of information.
Summation over all the points yields the following estima-
tion of data length:

L = − �
i=1

N

ln��p���i�� =
N

2

ln

2��2

�2 + 1� . �4�

One can readily see that the data length is monotonically
related to root mean square error. By increasing the dimen-
sion of the model and the number of the parameters entering
it we achieve better data approximation and, hence, smaller
length of their description.

Model length. Let model parameters have prior distribu-
tion p����. Then, the model length �or the amount of infor-
mation needed for transmission of its parameters� will be

K = − ln���p����� , �5�

where �� is the volume in the space of parameters determin-
ing accuracy of their transmission. Assume the parameters of
the model to be independent a priori and normally distrib-
uted with zero mean

p���� = 
k=1

M
1

	2��k

exp
−
�k

2

2�k
� , �6�

where �k
2 is the dispersion of the corresponding parameter.

Let us substitute Eq. �6� into Eq. �5� and write the model
description length in the form

K = �
k
�1

2
ln�2��k

2� +
�k

2

2�k
2� − ln �� . �7�

Minimum description length. Let us represent the total de-
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FIG. 1. �Color online� Fraction of false neighbors series for different magnitudes of noise. �a� Lorenz system; �b� Mackey-Glass
system.
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scriptive length �see Eqs. �1�, �4�, and �7�� in the form

F = sup
����

���� − ln �� ,

���� =
N

2

ln

2��2���
�2 + 1� + �

k=1

M 
1

2
ln�2��k

2� +
�k

2

2�k
2� .

�8�

The problem of seeking its minimum will be to find the
optimal region �� in the space of parameters the border of
which will evidently be the level surface of the function
����. Let us perform series expansion of ���� in the vicin-
ity of the minimum to an accuracy of quadratic terms

���0 + �� = ���0� +
1

2
�TQ� ,

where Qij =
�2�

��i�� j
��0

is the second derivative matrix in the
minimum. In this approximation, the level surface will be an
ellipsoid oriented along the eigenvectors of matrix Q. Fur-
thermore, we pass over to the proper basis of matrix Q, in
which the description length takes on the form

F = ���0� +
1

2�
k=1

M

�k
2�k − ln

k=1

M

��k� . �9�

Here, �k are eigenvalues of matrix Q, and the volume in the
space of parameters is defined invariantly as ��=k=1

M ��k�.
From the condition of F minimum we obtain �k= 1

	�k
, which

on substitution into Eq. �9� gives MDL

F� = ���0� +
M

2
+

1

2
ln�Q� , �10�

where �Q� is understood as determinant of matrix Q.
Apparently, if complication of the model �an increase in

the number of its parameters M� does not lead to a pro-
nounced decrease in root mean square error �and, hence, to a
marked decrease in data length�, the MDL of the model will
increase. Therefore, it is to be expected that there will be a
minimum in the MDL dependence on the number of param-
eters.

Model. We take as a model an artificial neural network
�11� in the form of a three-layer perceptron �12�

f�xk−1, . . . ,xk−D,�� = �
i=1

m

	i tanh
�
j=1

D

wijxj−k + 
i� . �11�

It was shown in �12� that this function is suitable for approxi-
mation of any regular function with preset accuracy. The
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FIG. 2. �Color online� Correlation dimension versus embedding dimension. �a� Lorenz system; �b� Mackey-Glass system.
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choice of such a parameterization is connected with a con-
venient way of defining priors for its parameters �see the next
paragraph for detail�. In Eq. �11� �= �� ,w ,�� are network
parameters, m is the number of neurons in the hidden layer,
and M =m�D+2� is the total number of parameters. Accord-
ing to �13�, prior distributions of network parameters were
regarded to be normal with zero mean. Output layer param-
eter dispersion was �	

2 = �xi
2� /m=1 /m.

The choice of dispersion of the other parameters of these
distributions is not a trivial task. In view of the chaotic na-
ture of the time series, initially closed trajectories scatter in
the phase space of the system. This means that the maximum
magnitude of the derivative ��f /�xk−j� that determines disper-
sion �w

2 will depend on index j as �wj =exp��j�, where � is
the maximum Lyapunov exponent. The time lag is taken to
be 1.

Finally, we have

�

2 = �xi

2��
j=1

D

�wj
2 = e2�

e2D� − 1

e2� − 1
� e2D�.

III. USING MDL FOR DETERMINING MINIMUM
EMBEDDING DIMENSION

In this section, we will demonstrate robustness of the
MDL criterion for determining embedding dimension on ex-
amples of two broadly known systems. In the first example
the Lorenz system was used �14� that is a set of three ordi-
nary differential equations

ẋ = ��y − x�

ẏ = x�r − z� − y

ż = xy − bz . �12�

In our numerical experiment, we used a time series of vari-
able x 1000-points long, sampled with the lag of 0.2 �20�,
generated by the system for the parameters r=28, �
=10, b=8 /3 providing chaotic regime of behavior. Another
series was generated by the Mackey-Glass system �15� de-
scribed by the delayed differential equation

ẋ = − 0.1x + 0.2
x�t − ��

1 + x�t − ��10 �13�

Since this system has an infinite number of degrees of free-
dom, it can be considered as a model of space-distributed
dynamical system. A series of 1000 points, sampled with the
lag 10 with parameter �=23 was used.

The generally accepted software for analysis of time se-
ries is TISEAN �16�. We present the results of assessing em-
bedding dimension by means of two well-known methods
from this software: the false nearest-neighbors method and
the method of estimation of correlation dimension of an at-
tractor. The first method gives the dependence of false neigh-
bors fraction on dimension; this value tends to zero for true
embedding dimension. Evaluation of correlation dimension
by the second method allows us to plot the correlation di-
mension value as a function of embedding dimension; at
correct values of embedding dimension one can expect a
plateau. Results of application of these methods to the time
series described above are shown in Figs. 1 and 2 together
with results of analogous calculations for the series with 5%,
10%, and 20% measurement noise �21�. It follows from the
figures that �a� the minimum embedding dimension esti-
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mated by a noiseless series is 4 for system �12� and 5 for
system �13�, �b� in the presence of noise it is impossible to
estimate embedding dimension by either method.

We calculated the minimum description length by the
same time series. Minimization of the function �10� over �0
was done by the variable metric method �17�. MDL values
obtained by the series with 10% noise is shown in Figs. 3�a�
and 3�b� as a function of an embedding dimension for differ-
ent number of neurons for both, system �12� and system �13�,
correspondingly. Clearly, these dependences have well-
pronounced minima and there is an optimal number of neu-
rons equal to 6 for the Lorenz system and 5 for the Mackey-
Glass system. MDL versus embedding dimension is plotted
in Figs. 4�a� and 4�b� for the optimal number of neurons and
different magnitudes of noise.

All the dependences clearly feature the minimum embed-
ding dimension equal to 4 for system �12� and 5 for system
�13�, which agrees with the results of studies by both the
false nearest neighbors and correlation dimension estimator
in the absence of noise.

Let us now compare the obtained values of embedding
dimension with estimates given by broadly used information
criteria such as AIC �8� and BIC �7�. In terms of the current
paper, these criteria consist in minimization of functions
N ln����2

�2 +2M and N ln����2

�2 +M ln N over � and M for AIC
and BIC, correspondingly. Regarding our problem param-
eters number M depends on both dimension D and number
of neurons m, therefore we have to find the values of D and
m minimizing these functions. We calculated these values for
our time series; the corresponding results are shown in Table
I. It is clear from this table that the estimates of dimension
given by AIC and BIC grow with increasing noise level for

both the considered systems, while the same estimates given
by MDL principle remain approximately fixed.

Finally, we consider the application of MDL principle to
time series of locomotory motions of humans. We used re-
sults of the experiment described in �18�, in which automatic
stepping in healthy humans under appropriate afferent stimu-
lation was investigated. In paper �19�, the authors hypoth-
esized existence of central rhythm generator controlling such
a motion. They created the phenomenological dynamical
model including four first-order differential equations, which
demonstrates behavior with similar dynamic properties as the
observed processes. In particular, it reproduces spontaneous
switchings between dynamical regimes with backward and
forward steps occurring in the experiment. In other words, it
was shown that the model with dimension dm equal to ap-
proximately �at least� 4 can be sufficient for reconstruction of
basic dynamical properties of the system underlying the ob-
served dynamics. This means that the embedding dimension
of the attractor reconstructed from single time series by the
delay method is expected to be less than 2dm+1=9. Now, we
will try to determine the optimal dimension for construction
of a global model using the MDL principle. The time series
we use is the oscillogram of knee-joint angle �see Fig. 5�.
The dependence of MDL on embedding dimension is shown
in Fig. 6�a� for different numbers of neurons. It is clear from
this figure that the optimal number of neurons is 4–5 and the
optimal embedding dimension is equal to 5–7, which is in
good agreement with the conclusion given in �19�. The esti-
mate of rms of noise component of time series is defined by
the value of ���� at � corresponding to the minimum de-
scription length. After division of the time series into rms, it
is equal to 0.15 for optimal number of neurons and optimal
dimension. The result of false nearest-neighbors method ap-

TABLE I. Values of optimal embedding dimension estimated by different information criteria from the analyzed time series with different
magnitudes of measurement noise.

Model/noise level

MDL AIC BIC

5% 10% 20% 5% 10% 20% 5% 10% 20%

Lorenz 4–5 4 4 6 8 �10 5–6 6 6

Mackey-Glass 5 5 5–6 5–6 8 �10 5–6 7–8 7–8
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plication is shown in Fig. 6�b� for comparison; it is clear that
this method is useless in the considered situation. The latter
is most likely connected with a sufficiently high noise level
in the analyzed data.

IV. CONCLUSION

Although methods of dynamic system reconstruction from
time series have been considered in a great amount of papers,
there are only scant examples of their useful application to
“natural” data obtained in experiments. One of the possible
reasons is the presence in experimental time series of a noise
component, generally of unknown origin. In the presence of
noise, the available techniques cannot specify the dimension
for reconstruction, even when the observed process may be
regarded to be the product of the evolution of a deterministic

dynamic system. The MDL method is more robust to the
magnitude of noise than the false nearest neighbors and other
existing techniques. Hence, it may be used in the case under
consideration.

It is also worthy of notice that the form of model �2�
corresponds to the case when noise in the system is dynamic.
Thus, the MDL principle may be used for reconstruction of
stochastic systems from the time series generated by them.
Reconstruction of stochastic systems will be considered else-
where.
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